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Abstract

A low-Reynolds-number second-moment closure without wall-re¯ection redistribution terms is tested in wall-bounded turbulent

¯ows with streamline curvature. The turbulence model was previously shown to give good predictions for a fully developed channel

¯ow, boundary layers in zero, adverse and favorable pressure gradients, plane and round jets, and ¯ows with wall blowing and

suction. In the present study, the model is used to calculate two fully developed curved channel ¯ows and four boundary layers on

curved walls. The turbulence model captures main features of the stabilizing and destabilizing e�ects of streamline curvature, though

some notable discrepancies between the predictions and measurements are present in boundary layers on convex walls. Ó 2000

Begell House Inc. Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

The ``basic'' second-moment turbulence closure (see
Launder, 1989) and its low-Reynolds-number variants (e.g.,
Launder and Shima, 1989; Shima, 1993) have been widely used
with success to calculate various turbulent ¯ows. A weakness
of these closures is that they contain wall-re¯ection redistri-
bution terms, which are formulated using the wall distance and
wall-normal vector. Due to these elements, it is di�cult to
apply the models to ¯ows with complex wall geometries.

Recently, Shima (1998) proposed a low-Reynolds-number
second-moment closure, which adopted a quasi-linear rapid
redistribution model but eliminated the conventional wall-
re¯ection redistribution terms. In that study, the model was
tested in a fully developed channel ¯ow, boundary layers in
zero, adverse and favorable pressure gradients, and plane and
round jets. The model performance was generally good. The
closure was also successfully applied to wall-bounded ¯ows
with blowing and suction (Shima et al., 1999). These results
encourage further testing of the model in various turbulent
¯ows.

Turbulent ¯ow with streamline curvature is of considerable
engineering interest. Testing of turbulence models in a variety
of such ¯ows is clearly needed before a su�ciently general
model is establihed. In the present study, we test the second-
moment closure in two curved channel ¯ows and four
boundary layers on curved walls.

2. Turbulence model

In this section, the second-moment closure proposed by
Shima (1998) is summarized. The stress transport model can be
written as:
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where Ui and ui denote the mean and ¯uctuating velocity
vectors, respectively, k the turbulence energy, e its dissipation
rate, m the kinematic viscosity, and the overbar implies the
ensemble averaging. In Eq. (4), P � Pkk=2 is the production
rate of k, and
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The di�usion coe�cient Cs � 0:22, and the four coe�cients of
redistribution terms are determined as:
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where A and A2 are the invariants of the stress anisotropy
tensor aij � uiuj=k ÿ 2dij=3 de®ned by:
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and RT � k2=me is the turbulence Reynolds number.

The transport model for e is
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The coe�cients Ce2 and Ce are assigned standard values, i.e.,
Ce2 � 1:92 and Ce � 0:15. For the coe�cient Ce1, the form

Ce1 � 1:44� b1 � b2; �17�

b1 � 0:25A min�k=2:5ÿ 1; 0� ÿ 1:4A min�P=eÿ 1; 0�; �18�

b2 � 1:0Ak2 max�k=2:5ÿ 1; 0�; �19�

k � min�k�; 4�; �20�

k� � o
oxi

k3=2

e

� �
o

oxi

k3=2

e

� �� �1=2

�21�

is adopted.
In the present stress transport model, the conventional wall-

re¯ection redistribution terms have been eliminated. The rapid
term with C3 works to produce the high anisotropy in normal
stresses in the wall vicinity. In thin shear ¯ows, the C4 term
appears only in the shear stress transport equation, and the
form (11) has been designed to reproduce a shear stress be-
havior in the log layer. For more details of the closure, see
Shima (1998).

3. Test cases

Table 1 summarizes the test cases. In curved channel ¯ows
(Cases 1 and 2), d denotes the channel half-width, and R is the
radius of curvature of the channel centerline. For boundary
layers (Cases 3±6), d denotes the boundary layer thickness, and
R is the radius of curvature of the wall. Case 1 is a fully de-
veloped ¯ow in a circularly curved channel, which Moser and
Moin (1987) created by direct numerical simulation (DNS). In
this case, the curvature is mild. Case 2 is also a fully developed
curved channel ¯ow from Kobayashi et al. (1989) experiment
in which the curvature is stronger than in Case 1. Cases 3±6 are
boundary layer ¯ows on curved walls taken from well-known
experimental investigations. In Cases 3 and 4 (Ho�mann and
Bradshaw), the curvature is mild, while Case 5 (Gillis and
Johnston, 1980) and Case 6 (Alving et al., 1990) are strongly
curved ¯ows. Cases 5 and 6 include recovery ¯ow on a ¯at wall
downstream of the curved section. The experimental data of
Cases 3, 4 and 6 are obtained from CTTM Data Library
(1993).

In Cases 1±3, due to instabilities associated with concave
curvature, Taylor±G�ortler vortices may exist. In the experi-
ment of Case 2, the authors observed no longitudinal vortices,
while in Cases 1 and 3, Taylor±G�ortler vortices are present and
the statistics vary in the spanwise direction. However, we make
one-dimensional calculation for Case 1 as well as Case 2, and
two-dimensional calculation for Case 3, as suggested for Case
3 at the 1980±1981 Stanford Conference (Kline et al., 1981).

In the case of fully developed curved channel ¯ows, the
governing equations in cylindrical coordinates r±h±z reduce to
a set of ordinary di�erential equations. The equations were
discretized by a second-order accurate ®nite-volume approach
and then solved by an iterative method. The number of grid
points was 140, concentrated towards the wall. Grid inde-
pendence was con®rmed by using a 70-point grid without any
perceptible e�ect on the results.

In case of boundary layer, the governing equations to be
solved are obtained by applying the boundary layer approxi-
mation to the mean ¯ow and turbulence model equations ex-
pressed in a coordinate system whose abscissa x is measured
along the wall, the ordinate y being measured at right angles to
it. The numerical solutions were obtained with an adapted
version of the parabolic solver PASSABLE (Leschziner, 1982).
For the solution procedure, see Launder and Shima (1989) and
Shima (1993).

4. Results

Fig. 1 compares the second-moment closure (denoted by Sh
model) with DNS data for fully developed curved channel ¯ow
at Ucd=m � 2990 (Case 1), where Uc is the centerline velocity. In
Fig. 1(a), the mean velocity in the streamwise direction U and
the distance from the wall y are non-dimensionalized with local
friction velocities. In Figs. 1(b) and (c), Us denotes the global
friction velocity de®ned by analogy with the plane channel

Table 1

Test cases

Case Investigators Flow type d=R

1 Moser and Moin Curved channel ¯ow � 0:0127

2 Kobayashi et al. Curved channel ¯ow � 0:0417

3 Ho�mann and Bradshaw Boundary layer on concave wall ' 0:01

4 Ho�mann and Bradshaw Boundary layer on convex wall ' 0:01

5 Gillis and Johnston Boundary layer on convex wall ' 0:1

6 Alving et al. Boundary layer on convex wall ' 0:1
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using the pressure gradient. The locations �r ÿ R�=d � ÿ1 and
1 correspond to the convex and concave walls, respectively.
Reynolds numbers based on the predicted local friction ve-
locities and d are 153 at the convex side and 178 at the concave
side, close to DNS values, 155 and 180, respectively. As is seen,
the mean velocity and shear stress pro®les are reproduced well
by the prediction, though the di�erence between convex-side
and concave-side velocity pro®les is somewhat overpredicted.
For the turbulence intensities, the model properly yields
asymmetric pro®les, but does not reproduce the high anisot-
ropy in the wall vicinity, as expected from the result for plane
channel ¯ow (Shima, 1998).

Fig. 2 shows the performance in the curved channel ¯ow
with stronger curvature at Umd=m � 10000 (Case 2), where Um

is the bulk mean velocity. Reynolds numbers based on the
predicted local friction velocities are 456 at the convex side and
596 at the concave side, somewhat lower than DNS values, 487
and 606, respectively. As is seen from Fig. 2(a), the present
model captures the stabilizing and destabilizing e�ects of cur-
vature, giving an asymmetric velocity pro®le close to the ex-
perimental data. When plotted in wall coordinates (Fig. 2(b)),
the predicted convex-side pro®le lies above the measured
pro®le due to the underpredicted skin friction, indicating that
the model somewhat overpredicts the stabilizing e�ect of
convex curvature. In Fig. 2(c), the calculated shear stress
deviates appreciably from the experimental data. The ®gure

includes a total shear stress distribution calculated from
measured wall shear stresses, which is not fully consistent with
the measured Reynolds shear stress. Therefore, the disagree-
ment between the prediction and data in Fig. 2(c) is not con-
clusive.

In the fully developed ¯ow in a circularly curved channel,
the shear stress transport equation can be written as
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where u and v denote the velocity ¯uctuation components in
the h and r directions, respectively, and U is the mean velocity
component in the h direction. The exact curvature-related
production u2U=r and the exact convection �v2 ÿ u2�U=r on
the left-hand side act to reduce and augment the shear stress

Fig. 2. Curved channel ¯ow (Case 2): (a) mean velocity; (b) mean

velocity in wall coordinates; (c) shear stress.

Fig. 1. Curved channel ¯ow (Case 1): (a) mean velocity in wall

coordinates; (b) shear stress; (c) turbulence intensities.
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magnitude near the convex (uv < 0) and concave (uv > 0)
walls, respectively. The good predictions presented above are
mainly due to these exact terms, though, of course, the redis-
tribution modeling is important for accurate predictions.

We now turn to boundary layer ¯ows. For brevity, the
governing equations in the adopted coordinate system are not
shown; the curvature-related stress convection, production and
redistribution terms are essentially the same as those in curved
channel ¯ow. The result for the case of mild concave curvature
(Case 3) is shown in Fig. 3, where Up denotes the potential ¯ow
velocity, Upw is Up at the wall, and the skin friction coe�cient
is de®ned by Cf � 2sw=qU 2

pw (where sw is the wall shear stress
and q is the density). A prediction using another low-Rey-
nolds-number second-moment closure (denoted by LS� mod-
el), which adopts the wall-re¯ection redistribution terms is also
plotted for comparison. This closure is a slightly modi®ed
version (Shima, 1993) of the model proposed by Launder and
Shima (1989). For completeness, the LS� model is given in
Appendix A. The response of the boundary layer to the ap-
plied concave curvature is rather slow (see Ho�mann et al.,

1985). As is seen from Fig. 3(c), a high shear stress region
grows gradually in the outer layer with increasing streamwise
distance, due to the destabilizing e�ect of the concave curva-
ture. At the last measurement station, the region is very wide.
The Sh model captures this behavior, while the LS� model does
not. As shown in Fig. 3(a), the skin friction also increases
appreciably in the streamwise direction, and the Sh model
predicts the experimental variation well. The mean velocity
pro®les are also reproduced faithfully by the model.

Fig. 4 compares the predictions with experimental data for
Case 4. In this case, the e�ect of curvature on skin friction
coe�cient is less evident than in Case 3, but in the outer layer,
the mild convex curvature appreciably reduces the shear stress.
The shear stress pro®les at four stations are shown in Fig. 4(c).
At Station 2, just after the start of convex curvature, the outer
layer quickly responds to the curvature, and the shear stress
decreases considerably. This quick response contrasts with the
relatively slow response to concave curvature in Case 3 (see
Muck et al., 1985). The prediction with the Sh model captures
this quick response, but gives an excessively large reduction.

Fig. 3. Boundary layer on concave wall (Case 3): (a) skin friction

coe�cient; (b) mean velocity; (c) shear stress.

Fig. 4. Boundary layer on convex wall (Case 4): (a) skin friction

coe�cient; (b) mean velocity; (c) shear stress.
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The predicted shear stress then increases downstream, whereas
the experimental data show a slow decrease. As is seen from
Figs. 4(a) and (b), the Sh model slightly underpredicts the skin
friction coe�cient, and gives good predictions for mean
velocity pro®les.

Fig. 5 shows the comparison between measurements and
predictions for Case 5. The two models capture the marked
reduction in skin friction in the highly curved section, but the
Sh model gives an excessively large reduction. This is consis-
tent with the predicted mean velocity pro®le at Station 5,
which lies above the measured pro®le. In the shear stress
pro®le at this station, the Sh model reproduces well the pro®le
in the outer layer including a negative stress region, but un-
derpredicts the peak value near the wall, leading to low value
of Cf . The very slow recovery in the experiment is not captured
by either of the two models. In this case, the overall prediction
with the LS� model is closer to measurements than that with
the Sh model.

Finally, the streamwise variation of skin friction coe�cient
and the mean velocity and shear stress pro®les for Case 6 are
shown in Fig. 6. This experiment concentrates on the recovery

from strong convex curvature, and no measurements are
available in the curved section except pressure distributions. In
the curved section, steep positive and negative pressure gra-
dients exist, and the predicted skin friction varies in a complex
manner under the e�ects of curvature and pressure gradient. In
this strongly curved section, the Sh model seems to give better
prediction than the LS� model, in contrast to Case 5. At Sta-
tion 3, just after the removal of wall curvature, the large wake
component in the measured velocity pro®le is reproduced well,
and the predicted Cf agrees well with the experimental value.
At this station, however, the peak value of the shear stress is
overpredicted, Fig. 6(c). This leads to a large skin friction in
the recovery and a high level of shear stress at the last mea-
surement station.

5. Concluding remarks

A second-moment closure without wall-re¯ection redistri-
bution terms has been tested in six di�erent wall-bounded

Fig. 5. Boundary layer on convex wall and recovery ¯at wall (Case 5):

(a) skin friction coe�cient; (b) mean velocity in wall coordinates;

(c) shear stress.

Fig. 6. Boundary layer on convex wall and recovery ¯at wall (Case 6):

(a) skin friction coe�cient; (b) mean velocity in wall coordinates;

(c) shear stress.

618 N. Shima et al. / Int. J. Heat and Fluid Flow 21 (2000) 614±619



¯ows with streamline curvature. On the whole, the turbulence
model with no curvature-speci®c modi®cations captures main
features of the stabilizing and destabilizing e�ects of streamline
curvature. As expected, the elimination of wall-re¯ection re-
distribution terms does not cause di�culties in predicting the
e�ects of streamline curvature. In boundary layers on convex
walls, some notable discrepancies between the predictions and
measurements are present. We feel that it is possible to obtain
better predictions by re®ning model functions in the redistri-
bution term and in the dissipation-rate transport equation.

Appendix A. LS� model

In the stress transport equation
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Cw2 � max�2�C2 ÿ 1�=3� 0:5; 0�=C2:

The terms /�w1�ij and /�w2�ij with Cl � 2:5 are wall-re¯ection
redistributions, which are formulated using the wall distance d
and wall-normal vector ni. The turbulent di�usion Tij is the
same as that in the Sh model.

In the e transport equation (15), the LS� model adopts:

Ce1 � 1:45� w1 � w2;

w1 � 1:5A�P=eÿ 1�;

w2 � 0:35�1ÿ 0:3A2� exp�ÿ�0:002RT�1=2�;

Ce2 � 1:9; Ce � 0:18:

The LS� model di�ers from the closure proposed by Launder
and Shima (1989) only in the constants in the model functions
w1 and w2. For more details, see Shima (1993).
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